SOLUCION DE LOS PROBLEMAS DE APLICACIÓN
1.- Sea los siguientes problemas :
Max Z = 2X1 + 3X2 + X4 – X3 – 2X5
S.a.
X1 – X2 + X4 – X5 = 100
X2 – X3 + 2X4 = 20
X3 – X4 ≤ 50
X1, X2, X3, X4, X5 ≥ 0
Forma Estandarizada:
Max Z = 2X1 + 3X2 – X3 + X4 – 2X5 – MA1 – MA2 + 0S3
S.a.
X1 – X2 + X4 – X5 + A1 = 100
X2 – X3 + 2X4 + A2 = 20
X3 – X4 + S3 = 50
X1 , X2 , X3 , X4 , X5 , A1 , A2 , S3 ≥ 0
| | Cj | 2 | 3 | -1 | 1 | 2 | -M | -M | 0 | |
CK | XK | Bi | X1 | X2 | X3 | X4 | X5 | A1 | A2 | S3 | θK |
-M | A1 | 100 | 1 | -1 | 0 | 1 | -1 | 1 | 0 | 0 | 100 |
-M | A2 | 20 | 0 | 1 | -1 | 2 | 0 | 0 | 1 | 0 | 10 |
0 | S3 | 50 | 0 | 0 | 1 | -1 | 0 | 0 | 0 | 1 | -50 |
| Zj | -120M | -M | 0 | M | -3M | M | -M | -M | 0 | |
| Zj + | Cj | -M - 2 | -3 | M – 1 | -3M - 1 | M - 2 | 0 | 0 | 0 | |
-M | A1 | 90 | 1 | -3/2 | -1/2 | 0 | -1 | 1 | -1/2 | 0 | 90 |
1 | X4 | 10 | 0 | 1/2 | -1/2 | 1 | 0 | 0 | 1/2 | 0 | - |
0 | S3 | 60 | 0 | 1/2 | 1/2 | 0 | 0 | 0 | 1/2 | 1 | - |
| Zj | -90M+10 | -M | 3M/2+1/2 | -M/2-1/2 | 1 | M | -M | M/2+1/2 | 0 | |
| Zj + | Cj | -M - 2 | 3M/2-5/2 | -M/2+1/2 | 0 | M - 2 | 0 | 3M/2+1/2 | 0 | |
2 | X1 | 90 | 1 | -3/2 | 1/2 | 0 | -1 | 1 | -1/2 | 0 | - |
1 | X4 | 10 | 0 | 1/2 | -1/2 | 1 | 0 | 0 | 1/2 | 0 | 20 |
0 | S3 | 60 | 0 | 1/2 | 1/2 | 0 | 0 | 0 | 1/2 | 1 | 120 |
| Zj | 190 | 2 | -5/2 | 1/2 | 1 | -2 | 2 | -1/2 | 0 | |
| Zj + | Cj | 0 | -11/2 | 3/2 | 0 | 0 | M + 2 | M – 1/2 | 0 | |
2 | X1 | 120 | 1 | 0 | -1 | 3 | -1 | 1 | 1 | 0 | - |
3 | X2 | 20 | 0 | 1 | -1 | 2 | 0 | 0 | 1 | 0 | - |
0 | S3 | 50 | 0 | 0 | 1 | -1 | 0 | 0 | 0 | 0 | 50 |
| Zj | 300 | 2 | 3 | -5 | 12 | -2 | 2 | 5 | 0 | |
| Zj + | Cj | 0 | 0 | -4 | 11 | 0 | M + 2 | M + 5 | 0 | |
2 | X1 | 170 | 1 | 0 | 0 | 2 | -1 | 1 | 1 | 1 | |
3 | X2 | 70 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | |
-1 | X3 | 150 | 0 | 0 | 1 | -1 | 0 | 0 | 0 | 1 | |
| Zj | 500 | 2 | 3 | -1 | 8 | -2 | 2 | 5 | 4 | |
| Zj + | Cj | 0 | 0 | 0 | 7 | 0 | M + 2 | M + 5 | 4 | |
No hay comentarios:
Publicar un comentario